Relativistic Heavy Ion Collider High-pt physics

Jan Rak PHENIX

Department of Physics and Astronomy

IOWA STATE UNIVERSITY

QCD in Relativistic Heavy Ion Era

low-Q hadronic degree of freedom

	SIS	AGS	SPS
√s GeV	2	5	17

high-Q partonic degree of freedom

Deconfinement to Quark-Gluon plasma

Lattice QCD predicts a phase transition to a quark-gluon plasma

where the long range confining force is screened.

Baryonic Potential μ_B (MeV)

Focus of Relativistic Heavy Ion Physics

- Investigate High Density QCD Matter in Laboratory
 - Determine its properties
- Phase Transitions?
 - Deconfinement to Quark-Gluon Plasma
 - Chiral symmetry restoration
- Relevance?
 - Quark-hadron phase transition in early Universe
 - Cores of dense stars
 - High density QCD

Evolution of Heavy Ion Collisions

Hard processes (early stages): Real and virtual photons, high p_T particles. PHENIX emphasis

Soft hadrons reflect medium properties when inelastic collisions stop (chemical freeze-out).

The Relativistic Heavy Ion Collider at BNL

- > Two independent rings 3.83 km in circumference
 - 120 bunches/ring
 - 106 ns crossing time
- Maximum Energy per N-N collision
 - $\sqrt{s} = 500 \text{ GeV p-p}$
 - √s = 200 GeV Au-Au
- Design Luminosity
 - Au-Au 2x10²⁶ cm⁻²s⁻¹
 - p p $2x10^{32}$ cm⁻²s⁻¹ (polarized)
- Capable of colliding any nuclear species on any other nuclear species

Pioneering High Energy Nucl. Interaction Exp PHENIX

The PHENIX Experiment, main emphasis on electromagnetic probes. Focus:

- •Rare probes J/Ψ , Ψ' , e^+e^- , $\mu^+\mu^-$, Φ , direct- γ ...
- The spin structure of the nucleons

The Configuration:

- · 2 Forward Muon Arms
- 2 Central Spectrometer Arms to measure photons, electrons, and hadrons

PHENIX Central Arm

PID by high resolution TOF

- π, K < 2 GeV/c
- proton, anti-proton < 4 GeV/c</p>

Beam View

 $\Delta \phi = \pi/4$

π^0 measurement by EMCal

- . 1<pt<15 GeV/c
- . 6 lead-scintillator (PbSc) sectors
- . 2 lead- glass (PbGI) sectors
- . $|\eta|$ <0.38 at midrapidity, $\Delta \phi = \pi$

The STAR Experiment, main emphasis on hadronic probes.

Focus:

• global observables, event-by-event physics, HBT, strangeness, high-pt jets... The Configuration:

large acceptance TPC, Silicon Vertex Tracker, RICH, TOF, EMC...

Au on Au central event at $\sqrt{s}=130 \text{GeV}$

beam view

Hard scattering in Heavy Ion collisions

schematic view of jet production

Particle production @RHIC

 $-dn_{ch}/d\eta \mid_{\eta=0} = 670$, $N_{total} \sim 7500$ 92% of (15,000) all quarks from vacuum !

Jets @RHIC:

- -produced early $\tau < 1 \text{fm}$
- -primarily from gluons
- -30-50% of particle production

Observed via:

- —fast leading particles
- -azimuthal correlations

Scattered partons radiate energy in colored medium \rightarrow suppression of high p_t particles

Paronic energy loss - probe of QGP

mean free path $\lambda > 1/\mu$.. range of screened gluon interaction

average energy loss:

$$\Delta E = L \int^{\omega_c} \frac{\omega dI}{d\omega} d\omega \simeq \alpha_s \,\omega_c \,, \,\, \omega_c = \frac{1}{2} \hat{q} \mathcal{L}^2$$

nonlinear interaction of gluons

dE/dx ~ few GeV/fm

nontrivial consequence of non-abelian nature of QCD

Baier, Gyulassy, Wang, Levin, Vitev et al

Observables

Inclusive pt-distribution

- number of particles per pt-bin.
- sensitive to partonic energy loss high-pt suppression.

Azimuthal anisotropy

- nuclear geometry breaks the azimuthal symmetry
- sensitive to early dynamics of initial system

•HBT correlations, rapidity distributions, heavy flavors

Inclusive pt-distribution

Inclusive p_T spectrum

Nuclear modification factor

$$R_{AA}(p_{T}) = \frac{1/N_{events} d^{2}N^{AA}/dp_{T}d\eta}{\langle N_{binary}\rangle (d^{2}\sigma_{pp}/dp_{T}d\eta/\sigma^{pp}_{inelastic})}$$

 R_{AA} is a relative yield with respect multiple nucleon-nucleon collisions. If there is no nuclear effect, AA is just uncoherent superposition of pp than $R_{AA} = 1$

Nuclear Modification of Hadron Spectra

- 1. Compare Au+Au to nucleon-nucleon cross sections
- 2. Compare Au+Au central/peripheral

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$

nucleon-nucleon cross section

 $\langle N_{\rm binary} \rangle / \sigma_{\rm inel}^{p+p}$

at high- p_T :

 $R_{AA} > 1$ k_T-broadening "Cronin"

 $R_{AA} = 1$ particle prod. $\propto \langle N_{binary} \rangle$

 $R_{AA} < 1$ suppression

Prague, August. 27, 2003 Jan Rak 16

pQCD phenomena at SPS

If any suppression, it is overwhelmed by initial state mult. scatt (Cronin effect). Initiated strong interest of RHIC community.

Where is the jet quenching in Pb+Pb ... X.N. Wang, Phys.Rev.Lett.81:1998

High p_T p-p and Au-Au π^0 Results

Run 2001/2002 p-p + Au-Au

$$\sqrt{s_{NN}} = 200 \text{ GeV}$$

Nuclear Modification Factor R_{AA}

CERN: Cronin enhancement

- $ightharpoonup Pb+Pb (\sqrt{s_{NN}} \sim 17 \text{ GeV})$
- $> \alpha + \alpha \quad (\sqrt{s_{NN}} \sim 31 \text{ GeV})$

RHIC: x4-5 suppression

- \rightarrow Au+Au ($\sqrt{s_{NN}} \sim 130 \text{ GeV}$)
- \rightarrow Au+Au ($\sqrt{s_{NN}} \sim 200 \text{ GeV}$)

Prague, August. 27, 2003 Jan Rak 19

RAA: High pt Suppression

Run 2001/2002 Au-Au

$$\sqrt{s_{NN}} = 200 \text{ GeV}$$
:

Prague, August. 27, 2003 Jan Rak 20

Suppression: an initial state effect?

Color Glass Condensate hep-ph/0210033

• final state Cronin

Gribov, Levin, Ryshkin, Mueller, Qiu, Kharzeev, McLerran, Venugopalan, Balitsky, Kovchegov, Kovner, Iancu

21

Prague, August. 27, 2003 Jan Rak

Model III: gluon condensate at small x

See D. Kharzeev, E. Levin Nucl-th/0108006

In Classical region the particle production mechanism is 2->1 unlike the pQCD 2->2. This implies:

Below $2*Q_s \approx 2*2$ GeV produced particles are not correlated.

Initial/final state effects - CGC

p+A (or d+A): The control experiment

- Nuclear effects other than a dense medium are known to affect hadron spectra (e.g. shadowing, Cronin effect) in p+A and d+A collisions, which do not have a created medium.
- Could these initial state effects be causing the suppression of high-P_T hadrons in Au+Au collisions?
- If so, then we should see suppression of high-P_T hadrons in d+Au collisions.

Jan Rak 24

High p_T Spectra in d-Au at √s_{NN} 200 GeV

Run 2002/2003:

Do see Cronin effect!

- "Cronin" enhancement more pronounced in the charged hadron measurement
- Possibly larger effect in protons at mid p_T

Implication of R_{dAu}?

RHIC at too high x for gluon saturation...

π^0 R_{AA} vs. predictions

Theoretical pre(post)dictions.

d+Au: I. Vitev, nucl-th/0302002

and private communication.

Au+Au: I. Vitev and M. Gyulassy, hep-ph/0208108, to appear in Nucl. Phys. A; M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 594, p. 371 (2001).

Initial state: mult. scatt., shadowing + final state dE/dx (Au+Au)

Also: Kopeliovich, et al (PRL88, 232303,2002)

predict R_{pA} ~1.1 max at p_T =2.5 GeV projectile as color dipole

Centrality Dependence

- Dramatically different and opposite centrality evolution of Au+Au experiment from d+Au control.
- Jet Suppression is clearly a final state effect.

summary

- Inclusive π^0 and chard hadron yields:
 - > R_{AA} was measured in wide range of pT in dAu and AuAu at $\sqrt{s_{NN}}$ = 200.
 - ► Significant suppression, $R_{AA} \approx 0.2$, found in AuAu collisions. "Cronin" like enhancement found in dAu charged hadron spectra and π^0 R_{dA} is consistent with one.

dAu data left only a little room for the initial state phenomena!

Existence of extremely opaque and "collective" partonic matter seems to be evident!